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WAVEWAT is a new processing algorithm to suppress the on-
resonance water signal in NMR spectra. It is based on a multiresolu-
tion analysis (MRA) of the free induction decay (FID) using a dyadic
discrete wavelet transform (DWT). The width of the suppressed
signal can be adjusted so that signals close to water are recovered
without distortion of the signal shape and intensity. Computational
efficiency is comparable to that of convolution filters employing a
Fourier transform. C© 2002 Elsevier Science (USA)
INTRODUCTION

NMR spectra of biological or biochemical samples are fre-
quently recorded in aqueous solution. The intensity of the water
signal in the spectra of such samples is several orders of magni-
tude larger than the intensities of the signals originating from the
sample. The suppression of the water signal has been a key issue
for designing NMR spectrometers, experiments, and processing
algorithms. Increased dynamic range of receivers combined with
sophisticated strategies to suppress the water signal enable the
detection of signals that have several orders of magnitude lower
intensity than the water signal. Experimental techniques to min-
imize the signal of water include presaturation (1), nonexcita-
tion using jump-return and binomial sequences (2, 3) spin-lock
pulses in INEPT sequences (4), suppression of water employing
pulsed field gradients combined with selective excitation (5),
and heteronuclear experiments using the PEP-HSQC (6) pulse
sequence. Although the intensity of the water resonance can be
significantly reduced employing these techniques, the residual
water signal is still larger and often broader than the signals of
interest. A basic problem is the reconstruction of signals close
to the water resonance. In the case of protein samples these are
the signals of Hα protons which are important for the calculation
of protein structures.

Several computational methods have been proposed to sup-
press the water resonance. Frequently, spectra are recorded with
the water signal at zero frequency in the middle of the spec-
trum (on-resonance). A common method to suppress the water
resonance is the subtraction of a low order polynomial which
1 To whom correspondence should be addressed.
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is fitted to the free induction decay (7 ). Marion et al. proposed
a convolution filter in which the free induction decay (FID) is
convoluted with a Gaussian or sine bell window (8). Subtraction
of the convoluted signal eliminates the on-resonance component
of the signal. A fast algorithm to calculate the convolution using
fast Fourier transformations was later proposed by Craven et al.
(9). Other alternatives include the use of Gabor transforms and
continuous wavelet transforms (CWT) (10–12). Five different
filtering approaches including the Gabor transformation (10),
the convolution method (8), a filtering method of Sodano and
Delepierre (13), a highpass butterworth filter described by Cross
(14), and a recently described finite impulse response filter (15)
were compared in a recent review (16). The water resonance can
also be eliminated by employing a singular value decomposition
(SVD) (17, 18) on a Hankel-type matrix derived from the FID
and suppression of the largest singular value(s). After recon-
struction of the FID the largest signals are eliminated. Although
this algorithm is very powerful it is not feasible for large spectra
because the SVD is computationally very demanding. In addi-
tion, SVD-based water suppression may influence the intensity
of other signals in the spectrum.

Water suppression algorithms must satisfy several criteria:
First, the water signal should be suppressed efficiently; second,
signals close to water should be recovered; and third, water sup-
pression should not cause any distortions in other regions of
the spectrum. Here we propose a new method based on dis-
crete wavelet transforms (DWT) applied to time domain data to
suppress the on-resonance water signal. It will be shown that
efficient water suppression can be achieved and signals close to
water can be recovered without distortion.

EXPERIMENTAL

WAVEWAT and other processing routines employed in this
work were implemented within the MATLAB (The Math-
works) integrated development environment. Spectra were pro-
cessed using the NMRLAB processing package (19). Fast
wavelet transforms were calculated employing routines from
WAVELAB (20).
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Wavelet transformation will here only be introduced briefly
because the principles of wavelet transforms are summarized
in several excellent textbooks (21, 22). Two different types of
wavelet transformation are commonly used in signal processing:
continuous wavelet transformation and discrete wavelet trans-
formation. Continuous wavelet transformation was previously
used to suppress the solvent signal (12). Here we used a discrete
wavelet transform for multiresolution analysis (MRA). DWT
requires a basis set of orthonormal wavelets which are derived
from a mother wavelet by dyadic dilatations and integer trans-
lations. With j denoting the dilatation index and k representing
the translation index a family of wavelets can be derived from a
mother wavelet ψ according to

ψ j,k(x) = 2 j/2 ψ(2 j x − k) [1]

for integer values j and k. The mother wavelet must have com-
pact support, i.e., ψ = 0 outside a finite interval. The 2 j/2 is a
scaling factor which arises from the normalization condition

∫ ∞

−∞
ψ2

j,k = 1. [2]

Since the wavelet is scaled and shifted the WT yields a time-
frequency representation of the signal.

A simple wavelet which is often used to explain the principles
of the wavelet transform is the Haar wavelet:

ψHaar =




1, 0 ≤ x <
1

2

−1,
1

2
≤ x < 1

0, otherwise.

[3]

For the Haar wavelet ψ the derived wavelets ψ j,k also have a
compact support

supp(ψ j,k) = [k2− j , (k + 1)2− j ). [4]

Now any square integrable function2 f (x) can be described by

f (x) = c00φ(x) +
n−1∑
j=0

2 j −1∑
k=0

c j,kψ j,k(x), [5]

where c j,k are wavelet coefficients, ψ j,k are wavelets derived
from a mother wavelet ψ , and φ is a scaling function (father

wavelet); in the case of the Haar wavelet transform it is unity on
the interval [0, 1). Using Eq. [5] a function f can be decomposed

2 For square integrable functions ‖ f ‖ = (
∫ ∞
∞ f 2(x) dx)1/2 < ∞ for x ∈ R,

i.e., f ∈ L
2(R). L

2(R) is a Banach space of square integrable functions.
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FIG. 1. Typically used wavelets. (A) Haar, (B) Coiflet (5), (C) Symmlet (8),
(D) Daubechies (5) wavelet. The numbers in parentheses describe the wavelet
parameter.

into a linear combination of wavelets ψ j,k . The same is true for
a data series which can be described by a function f (x).

Commonly used wavelets are more complex than the Haar
wavelet which is not very efficient to approximate smooth func-
tions. More complex wavelets require a smaller number of
wavelet coefficients c j,k to compose a signal. Typical wavelets
used for water suppression are shown in Fig. 1 (23, 24). Fast algo-
rithms are available to calculate wavelet coefficients (21, 22, 25).
A brief introduction to the process of calculating the wavelet co-
efficients can be found in the Appendix.

MRA was introduced by Mallat (22, 26). It is based on the idea
that a function f (x) can be approximated at different dilatation
levels j . Each approximation f j can be written as an approxi-
mation on a coarser level f j−1 and a detail function. The higher
the level j the finer the approximation f j of the original function
and the lower the level j the coarser the approximation. Thus j
describes the resolution level of the function approximation. For
the formal definition of MRA which requires the introduction of
a ladder of nested subspaces for the different resolution levels
j we refer to the previously mentioned textbooks on wavelets
(21, 22). It is important to note that the dyadic scaling of wavelets
ψ j,k used in MRA limits the number of resolution levels to
J = 2N where N is the number of data points.

RESULTS

MRA is a useful tool to decompose a signal into time-scale
components. In the case of time domain NMR data this corre-
sponds to a decomposition in different frequency ranges. This
is demonstrated in Fig. 2 which depicts a multiscale plot of an
experimental FID originating from a 15N-HSQC spectrum of an

SH2 domain. This plot was calculated by transforming back sig-
nal components at different dyadic levels. The sum of the signals
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FIG. 2. Top, multiresolution plot of a FID from a 15N-HSQC spectrum recor

recovered from the MRA (gray) shown in Fig. 1 only using levels with J ≥ 7.

at all dyadic levels is equivalent to the original signal. Leaving
out levels corresponding to low numbers of j will eliminate low
frequency components of the signal. A basic limitation is the
fact that the number of dyadic levels is limited by 2J = N be-
cause the number of dyadic levels determines the width of the
filter. A sufficiently large number of data points for a reasonably
narrow filter width was obtained by repeated zero filling of the
FID. Another problem arose from edge effects, particularly at
the end of the FID where the signal intensity is low as can be
seen in Fig. 2. Edge effects could be eliminated by adding a
mirror image of the FID on the negative time axis.

The filter characteristics of WAVEWAT are illustrated in Fig. 3
employing a test spectrum which consists of a series of equally
spaced lines with a separation of 25 Hz. The dwell time was set to
125 µs equivalent to a 8000-Hz sweep width. Figure 3A depicts
the central part of this test spectrum. Figure 3B shows the result
after applying a 64-point convolution filter to the time domain
signal followed by Fourier transformation. For this combination
of dwell time and width of the Gaussian convolution filter a
broad range of approximately 400 Hz is affected. The width of
the distortion can be significantly reduced by increasing the num-
ber of points of the convolution function. This is demonstrated
in Fig. 3C using a 128-point Gaussian convolution function. It
should be emphasized that the width of the convolution window
increases with the dwell time of the spectrum and is in princi-

ple independent of the number of data points. However, the size
of the convolution window must be significantly smaller than
ded at 500 MHz using a 1.2-mM protein sample. Bottom, original FID and FID
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FIG. 3. (A) Synthetic test spectrum sampled in the time domain using a
dwell time between data points of 125 µs (corresponding to a sweep width of
8000 Hz) with peaks separated by 25 Hz. The shown test spectrum was obtained
after applying a fast Fourier transform to the corresponding free induction de-
cay. (B) Test spectrum from (A) after applying a 64-point convolution filter
to the corresponding signal in the time domain followed by Fourier transform.
(C) Test spectrum from (A) after applying a 128-point convolution filter to the
corresponding signal in the time domain followed by Fourier transform. (D) Test

spectrum from (A) after applying WAVEWAT suppressing 7 dyadic levels using
a symmlet-8 wavelet and mirror reflection of the FID.
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FIG. 4. NOESY spectrum of flavodoxin desulfovibrio vulgaris recorded at 500-MHz proton frequency with presaturation applied during recycle delays. Left,

the water resonance was suppressed using a Gaussian convolution filter using 128 points for the filter. Right, the water resonance was suppressed using WAVEWAT

c
with a Daubechies 20 wavelet (4-fold zero-filling using 6 dyadic levels for the re

the number of data points in the FID. Figure 3D depicts filter
characteristics of WAVEWAT eliminating 7 dyadic levels using
a symmlet-8 as a wavelet and mirror reflection of the FID. This
figure shows the sharpness of the edge of the WAVEWAT filter.
The central signal is suppressed without any distortion of other
signals.

Figure 4 compares 2D-NOESY spectrum of flavodoxin desul-
fovibrio vulgaris processed with a 128-point Gaussian convolu-
tion filter and with WAVEWAT (using a Daubechies 20 wavelet,
fourfold zero-filling, and 6 dyadic levels for the restoration of
the FID). In both spectra the filter parameters were chosen to
suppress a sufficiently narrow region around the water signal to
observe peaks close to the water resonance. In both cases some
residual water signal is observed. In Fig. 4A some of the differ-
ences between both peaks are marked gray. The sharper edges of
the WAVEWAT filter allow the detection of a few extra signals
and avoid distortions on the edge of the filter.

DISCUSSION

Water suppression is an important step in processing NMR
spectra of biological samples. This includes NMR spectroscopy
of biomolecules as well as in vivo spectroscopy. Despite many
efforts to reduce the contribution of the water signal to the over-
all FID the signal with the highest intensity is still often the water
signal. Because the width of the water resonance at the maxi-
mum intensity of signals of the sample is usually significantly
higher than the width of signals of the sample it is desirable to

suppress the water signal in the time domain. The choice of the
technique used to suppress the water resonance depends on the
onstruction).

type of the spectrum. SVD based water suppression is powerful
for in vivo spectra with relatively few data points but impractical
for high resolution spectra with a large number of data points
or multidimensional spectra with a large number of FIDs. The
most commonly used techniques are polynomial subtraction and
the subtraction of convolutions of the signal with functions with
a compact support. Polynomial subtraction does not completely
eliminate the water signal and convolution based water suppres-
sion distorts signal intensities close to the water signal. For this
reason there has been continuous interest in other more powerful
techniques to solve the problem. The technique presented here
combines a number of powerful properties: It affects only a nar-
row region of the spectrum and is computationally very efficient.

WAVEWAT water suppression depends on few adjustable pa-
rameters: First, the type of wavelet must be chosen. Daubechies,
coiflet, and symmlet wavelets proved to be almost equally suit-
able. Second, if the number of data points is smaller then 512,
zero-filling the FID has been useful to tune the width of the sup-
pression filter. Third, the user can choose the number of levels
to be suppressed according to the desired bandwidth of signal
removal. It should be noted, however, that off-resonance solvent
signals can be suppressed after phase shifting complex time do-
main data points.

Computational efficiency. The proposed method performs
comparably to the convolution method originally proposed by
Marion et al. (8, 9, 27 ) if the latter is calculated employing a
fast Fourier transform according to the convolution theorem
F{S(t) 
 g(t)} = F{S(t)} · F{g(t)},
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where S(t) represents the signal and g(t) the convolution func-
tion (e.g., a Gaussian function). The convolution filter requires
approximately 2N log(N ) operations (if g is short compared
to S, its Fourier transform is calculated comparably fast). The
DWT-filter proposed here must calculate a forward (FWT) and
an inverse wavelet transform (IWT) which requires 2N opera-
tions. When zero-filling is used to reduce the width of the filter
by increasing the number of dyadic levels computational effi-
ciency suffers from an increased number of points N which must
be transformed. In our experience 1024 or 2048 points (210 and
211) are appropriate.

In summary, WAVEWAT is a highly efficient algorithm based
on discrete wavelet transforms. It is suitable for large data sets
and allows recovery of signals close to that of the solvent. Further
applications of the technique include reconstruction of the FID
using only low order levels representing the water signal. This
allows the calculation of the area under the water signal which
is often required in in vivo spectroscopy.

APPENDIX

A comprehensive description of the principles of wavelet
transforms, construction of wavelets, and algorithms is far be-
yond the scope of this work. An in-depth derivation of the theory
is found in (21, 22, 25). Here we will briefly describe the very
basic principles of the dyadic discrete wavelet transform.

Let f [n] be a time signal which is uniformly sampled at in-
tervals tdw. Let the size of the discrete signal be N . The discrete
dyadic wavelet transformation (DWT) can be derived from the
continuous formula

W f (u, s) = 〈 f, ψu,s〉 =
∫ ∞

−∞
f (t)

1√
s
ψ∗

(
t − u

s

)
dt

by using a discretized wavelet with compact support

ψ j [n] = 1√
2 j

ψ

(
n

2 j

)
.

The star in the above formula denotes the complex conjugation.
The DWT is computed at different scales s = 2 j using recur-
sive application of low- and highpass filters, expressed as linear
transformations as

LN f [n] =
∑

l

hl f [(l + 2n) modN ]

HN f [n] =
∑

l

λl f [(l + 2n) modN ],

where n ranges from 0 to N/2 − 1.
The DWT is now performed by iterated application of these

K
filters. Start with the entire data vector consisting of N = 2
entries. The following two vectors are then recursively computed
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by the DWT,

{α( j, k), k = 0, . . . , 2 j − 1}, {β( j, k), k = 0, . . . , 2 j − 1}

with 0 ≤ j ≤ K − 1. The α’s and β’s are the lowpass and
highpass filtered signals, respectively:

α( j, k) = L2 j+1α( j + 1, k)

β( j, k) = H2 j+1β( j + 1, k).

The α( j, k) and β( j, k) approximate the exact wavelet coeffi-
cients, which are given by

α j,k = 〈 f, φ j,k〉 =
∑

l

hl−2kα j+1,l

β j,k = 〈 f, ψ j,k〉 =
∑

l

λl−2kα j+1,l

with λk = (−1)k+1h1−k and hk are the coefficients of m0(ξ ):

m0(ξ ) = 1√
2

∑
k

hk exp(−ikξ ).

φ j,k is the father and ψ j,k the corresponding mother wavelet.
The different coefficients hl correspond to the wavelet used

to perform the DWT. The calculation of those coefficients may
be described using an approach where wavelets are understood
as a hierarchical filter bank (28). Suppose a filter B that is zero
for “smooth” signals, e.g., that is, vanishing for a constant signal
and for a linear ramp:

b0 · 1 + b1 · 1 + b2 · 1 + b3 · 1 = 0

b0 · 0 + b1 · 1 + b2 · 2 + b3 · 3 = 0.

Suppose another filter C , which does exactly the opposite. This
results in

c0b0 + c1b1 + c2b2 + c3b3 = 0

because the C filter has vanishing coefficients when the B filter
does not and vice versa. A pair of such filters is called quadrature
mirror filters. A possible solution for this equation is

b0 = c3, b1 = −c2, b2 = c1, b3 = −c0,

resulting in

−c0 + c1 − c2 + c3 = 0

and
−3c0 + 2c1 − c2 = 0
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for the two filter conditions for the constant and the linear ramp
of the input signal. We require further that the transformation
with these filters has to be orthogonal, resulting in two additional
nontrivial equations:

c2
0 + c2

1 + c2
2 + c2

3 = 1

and

c0c2 + c1c3 = 0.

We have now four equations with four unknowns, which have
the solution

c0 = 1 + √
3

4
√

2
, c1 = 3 + √

3

4
√

2

c2 = 3 − √
3

4
√

2
, c1 = 1 − √

3

4
√

2
.

The coefficients calculated so far are known as those for a
Daubechies-4 wavelet.

Supplementary Material

All sources for the WAVEWAT algorithm are available on the
Internet. Routines listed in the following table (and subroutines
called from these routines) are required:

Programs from Wavelab and from NMRLab(http://www.nmrlab.
net). Used for Wavelab (http://www.stat.stanford.edu/˜wavelab)

Rewavelab FWT PO Forward Wavelet Transform
(periodized, orthogonal)

IWT PO IWT PO – Inverse Wavelet
Transform (periodized, orthogonal)

nmrlab WAVEWAT Eliminate on-resonace signal
from an FID by MRA

Program Sources for Fig. 2

The following script will reproduce Figs. 2A–2D. The exe-
cution of this script in MATLAB requires that NMRLab and
WAVELAB be installed.

fid = ifft(ifftshift(SPC));

fid lr = fid(1:1024*2);

clear fid FID

FID = fid lr;

clear SPC

SPC = fftshift(fft(FID));

TD = length(FID);

clear xaxis

xaxis=linspace(-SWH/2,SWH/2,TD);

subplot(4,1,1)

plot(xaxis,real(SPC))
set(gca,‘XLim’,[-700,700],‘YLIM’,[-20,420],‘YTick’,[],

‘FontSize’,12)
, AND RÜTERJANS

text(-690,370,‘A’,‘FontSize’,12)

xlabel(‘Hz’,‘FontSize’,12)

% *******************************

fid cnv hr 1 = sol(FID,par1,par2);

spc cnv hr 1 = fftshift((fft(fid cnv hr 1)));

subplot(4,1,2)

plot(xaxis,real(spc cnv hr 1)) set(gca,‘XLim’,[-700,700],

‘YLIM’, [-20,420],‘YTick’,[],‘FontSize’,12)

text(-690,370,‘B’,‘FontSize’,12) xlabel(‘Hz’,‘FontSize’,12)

% *******************************

par1 = 64

par2 = 32

fid cnv hr 2 = sol(FID,par1,par2);

spc cnv hr 2 = fftshift((fft(fid cnv hr 2)));

subplot(4,1,3)

plot(xaxis,real(spc cnv hr 2)) set(gca,‘XLim’,[-700,700],

‘YLIM’, [-20,420],‘YTick’,[],‘FontSize’,12)

text(-690,370,‘C’,‘FontSize’,12)

xlabel(‘Hz’,‘FontSize’,12)

% *******************************

fid ww = wavewat(FID,1,7,‘Symmlet’,8,1);

spc ww = fftshift((fft(fid ww)));

subplot(4,1,4)

plot(xaxis,real(spc ww)) set(gca,‘XLim’,[-700,700],‘YLIM’,

[-20,420],‘YTick’,[],‘FontSize’,12)

text(-690,370,‘D’,‘FontSize’,12)

xlabel(‘Hz’,‘FontSize’,12)
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suppression using a spin lock in 2D and 3D NMR spectroscopy with aqueous
solutions, J. Magn. Reson. 85, 608–613 (1989).

5. M. Piotto, V. Saudek, and V. Sklenar, Gradient-tailored excitation for single-
quantum NMR spectroscopy of aqueous solutions, J. Biomol. NMR 2, 661–
666 (1992).

6. J. Cavanagh and M. Rance, Sensitivity enhanced NMR techniques for the
study of biomolecules, Annu. Rep. NMR Spectrosc. 27, 1–58 (1993).
7. A. Bielecki and M. Levitt, Frequency-selective double-quantum-filtered
COSY in water, J. Magn. Reson. 82, 562–570 (1989).



S
WAVEWAT—IMPROVED

8. A. D. Marion, Improved solvent suppression in one- and two-dimensional
NMR spectra by convolution of time-domain data, J. Magn. Reson. 84,
425–430 (1989).

9. C. Craven and J. Waltho, The action of time-domain convolution filters for
solvent suppression, J. Magn. Reson. B 106, 40–46 (1995).

10. D. Barache, J. Antoine, and J. Dereppe, The continuous wavelet trans-
form, an analysis tool for NMR spectroscopy, J. Magn. Reson. 128, 1–11
(1997).

11. J. Antoine, A. Coron, and J. Dereppe, Water peak suppression: Time-
frequency vs time-scale approach, J. Magn. Reson. 144, 189–194 (2000).

12. H. Serraı̈, L. Senhadji, J. DeCertaines, and J. Coatrieux, Time-domain quan-
tification of amplitude, chemical shift, apparent relaxation time t∗2 and phase
by wavelet-transform analysis: Application to biomedical magnetic reso-
nance spectroscopy, J. Magn. Reson. 124, 20–34 (1997).

13. P. Sodano and M. Delepierre, Clean and efficient suppression of the water
signal in multidimension NMR spectra, J. Magn. Reson. A 104, 88–92
(1993).

14. K. Cross, Improved digital filtering technique for solvent suppression,
J. Magn. Reson. A 101, 220–224 (1993).

15. T. Sundin, L. Vanhamme, P. Van Hecke, I. Dologlou, and S. Van Huffel,
Accurate quantification of 1 H spectra: From finite impulse response filter
design for solvent suppression to parameter estimation, J. Magn. Reson.
139, 189–204 (1999).

16. A. Coron, L. Vanhamme, J.-P. Antoine, P. Van Hecke, and S. Van Huffel, The

filtering approach to solvent peak suppression in MRS: A critical review,
J. Magn. Reson. 152 (2001).
OLVENT SUPPRESSION 25

17. W. Pijnappel, A. van den Boogaart, R. de Beer, and D. van Ormondt, SVD-
based quantification of magnetic resonance signals, J. Magn. Reson. 97,
122–134 (1992).

18. G. Zhu, D. Smith, and Y. Hua, Post-acquisition solvent suppression by
singular-value decomposition, J. Magn. Reson. 124, 286–289 (1997).

19. U. Günther, C. Ludwig, and H. Rüterjans, NMRLAB—Advanced NMR
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